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Abstract. Zero-field neutron polarimetric measurements have been made on semi-metallic
phosphorus-rich Eu(As1−xPx)3 with x = 0.80 to determine the magnetic structure of the low-
temperature helimagnetic phase. Unlike unpolarized neutron diffraction, this technique allows
an unambiguous determination of the spin configuration. We show that the previous structure
model derived from unpolarized neutron diffraction data in which the Eu magnetic moments
were assumed to be confined to thea–c plane is not correct. The zero-field neutron polarimetric
data clearly demonstrate the existence of a spin component parallel to the monoclinicb-axis.
The new model based on these observations is in better agreement with the diffraction intensities
obtained from unpolarized neutron diffraction. In this model the low-temperature helimagnetic
phase in phosphorus-rich Eu(As1−xPx)3 has two components, one parallel to theb-axis and a
second which lies in thea–c plane nearly perpendicular to the propagation vector.

1. Introduction

Ever since the pioneering experiment of Shull and Smart on MnO [1] the spin configuration
of the magnetically ordered condensed state has traditionally been determined using
unpolarized neutron diffraction intensities. Often the sample studied is polycrystalline and,
although the technique works remarkably well for collinear spin structures, it often fails
for a more complicated spin configuration, for example, non-collinear, incommensurate
helimagnetic structure. For such structures even an unpolarized neutron diffraction
investigation on good-quality single crystals may not yield a unique solution. For
high-symmetry crystal structures the existence of several magnetic domains adds further
uncertainty. Even traditional polarized neutron diffraction methods with one-dimensional
polarization analysis on single crystals may fail to give a unique spin configuration.

In the present paper we demonstrate the power of zero-field three-dimensional neutron
polarimetry in determining unambiguously the spin configuration of incommensurate
modulated magnetic structures.

2. Previous work

Semi-metallic EuAs3 forms a continuous series of solid solutions Eu(As1−xPx)3 with an
interesting magnetic phase diagram in which several modulated magnetic phases have been
observed [2–5]. The solid solution retains the EuAs3 structure [6] with space groupC2/m
for x between 0 and 0.98. The magnetic properties of this system are unexpectedly
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Figure 1. The magnetic(T , x) phase diagram of Eu(As1−xPx )3, after [5].

complex for a Eu2+ ion in a spherically symmetric S state with no orbital moment.
EuAs3 orders atTN ≈ 11 K to a sine-wave amplitude-modulated structure in which the
magnetic moments are parallel to the monoclinicb-axis of the crystal. The periodicity of
this modulated structure depends strongly on temperature and locks into a commensurate
antiferromagnetic phase with propagation vectorτ c = (−1, 0, 1

2) at TL = 10.3 K. Arsenic-
rich Eu(As1−xPx)3 behaves similarly. Phosphorus-rich Eu(As1−xPx)3 also orders atTN to the
sine-wave phase, but instead of locking into a commensurate phase undergoes a transition
to a second incommensurate phase at a lower temperature. Figure 1 shows the(T , x)

magnetic phase diagram of Eu(As1−xPx)3. We have already studied the low-temperature
magnetic structure of Eu(As0.02P0.98)3 using unpolarized neutron diffraction from a single
crystal [5]. The propagation vector of the second incommensurate phase was found to be
τ = (−0.726, 0, 0.222) at 4.2 K. Intensities of 209 independent magnetic reflections were
measured. Two structure models which retain the full monoclinic symmetry were tried.
In the first (a) the spins are held in thea–c plane and their directions are sinusoidally
modulated (the helical or elliptic cycloidal model). In the second model (b), which is
essentially the same as that for the higher-temperature phase, the spins are parallel to±b
and their amplitude is modulated sinusoidally (the sine-wave model). In both models the
pairs of Eu atoms related by the centre of symmetry at the origin have parallel spins, as
in the antiferromagnetic commensurate phase of EuAs3, but are modulated from cell to
cell. Model (a) gave a significantly better agreement factor ofR = 0.15 compared to the
valueR = 0.21 for model (b). We did not try any variation of model (a) in which the
spins were not restricted to lying in thea–c plane. Our resonant x-ray magnetic scattering
investigations with polarization analysis [7] suggested that the magnetic structure of the
helimagnetic phase of Eu(As1−xPx)3 must contain a component of spin parallel to theb-
axis. However, this method could not give us any information about the actual magnetic
structure. We have therefore undertaken a new study of the magnetic structure of the



The helimagnetic structure of Eu(As0.20P0.80)3 9169

helimagnetic phase of Eu(As1−xPx)3 using zero-field neutron polarimetry [8] to carry out
spherical polarization analysis of the magnetic elastic scattering.

3. Neutron polarimetry

3.1. Experimental details

The same small single crystal of Eu(As0.20P0.80)3 as was used in reference [5], of linear
dimensions 1× 0.6× 4.5 mm3, was used for the present experiment. Its lattice parameters
at 2 K area = 9.08 Å, b = 7.22 Å, c = 5.59 Å, and β = 112.95◦. Zero-field neutron
polarimetry was carried out using Cryopad II [7] installed on the sample table of the
polarized neutron triple-axis spectrometer IN20 at the Institut Laue–Langevin. The crystal
was mounted with itsb-axis vertical inside an ILL orange cryostat placed in the annular
zero-field space of Cryopad II. For each of a number ofh0` reflections the direction of the
scattered polarization was determined with the incident polarization successively parallel
to the vertical direction (z), the scattering vector (x) and the third direction (y) which
completes the right-handed Cartesian set. These axes are the polarization axes and from
their definition the magnetic interaction vectorQ lies in they–z plane. The measurements
were performed with a neutron wavelength of 1.53Å. The polarization analysis showed
that in all cases the directions of the incident and scattered polarization were parallel or
antiparallel to within the experimental error. However, for incident polarization parallel
to y or z the magnitude of the scattered polarization was significantly reduced and the
degree of this depolarization varied for the differenth0` satellite reflections. The results
are summarized in table 1 which gives the depolarization observed for they andz incident
directions for each reflection measured.

Table 1. Observed and calculated values of the depolarization with the incident beam polarized
parallel tox andz for h0` magnetic satellite reflections from Eu(As0.20P0.80)3.

Pobs Pcalc Pobs Pcalc

h k l y z

−0.78 0.00 0.25−0.1198 −0.0842 0.1150 0.0842
−3.22 0.00 −1.25 −0.1662 −0.1465 0.1725 0.1465
−1.22 0.00 0.75−0.3832 −0.3783 0.3867 0.3783
−0.78 0.00 −0.75 −0.3331 −0.3621 0.3432 0.3621
−2.80 0.00 1.25−0.1824 −0.1952 0.2254 0.1952
−3.20 0.00 1.75−0.3343 −0.3028 0.3154 0.3028
−2.80 0.00 0.25 0.0282 0.0031−0.0049 −0.0031
−3.20 0.00 −0.25 −0.0049 −0.0207 0.0248 0.0207

3.2. Analysis of the results

For a helical or cycloidal magnetic structure the magnetic moment on theith sublattice of
the j th unit cell of the structure may be written as

Sj l = Aj cos(τ · rl + φj )+ iBi sin(τ · rj + φj ) (1)

whereAj andBj are perpendicular vectors giving the magnitude and direction of the major
and minor axes of the elliptical envelope of the spin modulation on thej th sublattice,τ is
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the propagation vector of the modulation andrl is the radius vector to the origin of thelth
unit cell. The corresponding magnetic interaction vector is

Q(k) = k̂ ×
{∑
j l

fi exp
[
ik · (rj + rl)

][
Aj cos(τ · rl + φj )+ iBj sin(τ · rl + φj )

]}× k̂.
(2)

The fj are the magnetic form factors,k̂ is a unit vector parallel tok and the sum is over
all magnetic sublattices and all unit cells. The sums over the sublattices and the cells can
be carried out in the usual way giving

Q(k) = δ(g,k ± τ )(C ± iD) (3)

whereg is a reciprocal-lattice vector and

C = k̂ ×
∑
j

fjAj exp(ik · rj + φj )× k̂ (4)

D = k̂ ×
∑
j

fjBj exp(ik · rj + φj )× k̂. (5)

For Eu(As1−xPx)3 (x 6 0.98) there are just two magnetic sublattices and they are related
by the centre of symmetry at the origin. Assuming that the magnetic moments at these two
sites have the same magnitude so thatA1 = A2 = A andB1 = B2 = B, the factors
C andD have the formC ′(a + ib) andD′(a + ib) whereC ′ andD′ are real vectors,
a = cos(ψ2− ψ1) andb = sin(ψ2− ψ1) we have

Q(g + τ ) = (C ′ + iD′)(a + ib) Q(g − τ ) = (C ′ − iD′)(a + ib). (6)

When, as in the present case, the magnetic scattering occurs at differentk to that at which
the nuclear scattering occurs, the expression for the cross-section for Bragg scattering of a
neutron beam with polarizationPi is [9]

∂σ

∂�
= Q ·Q∗ + iPi · (Q∗ ×Q) (7)

and the scattered polarizationPs is

Ps
∂σ

∂�
= Q(Pi ·Q∗)+Q∗(Pi ·Q)− Pi (Q ·Q∗)− i(Q∗ ×Q). (8)

The relationship between the polarizations of the incident and scattered beams may be
described by the equation [10]

Psj = PjkPik + Pcj .
The tensorP describes the effect of the scattering process on the magnitude and direction
of an incident polarized, or partly polarized, beam and the vectorPc gives the polarization
created in the scattering process. If the incident beam is nearly fully polarized, as in the
present experiment,Pc can be neglected since no significant polarization can be created.
For the sine-wave-modulated model,A is parallel tob (z for h0` reflections) andB is
zero.C ′ is parallel toz andD′ = 0. The cross-section is simplyQ ·Q∗ = |C ′|2(a2+ b2)

and the polarization matrix has the elements

Pxx = −1

Pxy = 0

Pxz = 0

Pyx = 0

Pyy = −1

Pyz = 0

Pzx = 0

Pzy = 0

Pzz = 1.

(9)

The scattered beam is always fully polarized; it is parallel to the incident polarization
for the x- and y-directions but reversed when the incident polarization is parallel to the
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spin directionz. This is just the behaviour that we observed for the higher-temperature
incommensurate phase of Eu(As0.20P0.80)3 and confirms that this does indeed have a sine-
wave amplitude-modulated structure with spins parallel tob.

For a spiral phase with no component of eitherA or B parallel tob, C ′ andD′ are
parallel to one another and to the polarization axisy for all h0` reflections;Q∗×Q = 0, so
the cross-section is simply|Q|2. The scattered polarization for theh0` reflections is given
by

Pxx = −1

Pxy = 0

Pxz = 0

Pyx = 0

Pyy = 1

Pyz = 0

Pzx = 0

Pzy = 0

Pzz = −1.

(10)

There is no depolarization even in the presence of chirality domains, and the incident and
scattered polarizations are parallel for they-direction and antiparallel for the other two.
This arrangement is therefore not compatible with our observations on theh0` reflections
of Eu(As0.20P0.80)3 in which a strong depolarization was observed in some reflections when
the incident polarization was parallel toy or z. It is clear therefore that one component of
the modulated spins is parallel tob. Assuming that this isA, then for theh0` reflections
C ′ is parallel toz andD′ to y. The magnitude ofC ′ is constant but that ofD′ varies
from a maximum for reflections for which the scattering vector is nearly perpendicular to
B to a minimum when it is nearly parallel. In this case the vectorQ∗ ×Q is proportional
to |C ′||D′| and its direction is parallel and antiparallel tox for the two chirality domains.
Any inequality in the population of the chirality domains is given by the parameterα where

α = V+ − V−
V+ + V− (11)

andV+ andV− are the volumes of crystal belonging to the two domains. In this case the
cross-section is|C ′|2+ |D′|2± Px |C ′||D′| where the final term has opposite signs for the
two domains. The scattered polarization is calculated from

Ps = V+(Ps ∂σ/∂�)+ + V−(Ps ∂σ/∂�)−
V+(∂σ/∂�)+ + V−(∂σ/∂�)− (12)

which, using equations (6), (7), (8) and (11), gives

Pxx = −1 Pyx = 0 Pzx = 0

Pxy = 2α|C ′||D′|
|C ′|2+ |D′|2 Pyy = −|C

′|2− |D′|2
|C ′|2+ |D′|2 Pzy = 0

Pxz = 2α|C ′||D′|
|C ′|2+ |D′|2 Pyz = 0 Pzz = |C

′|2− |D′|2
|C ′|2+ |D′|2 .

(13)

These equations explain the source of the depolarization in our measurements, since when
α = 0 the termsPxy and Pxz which give rotation of the scattered polarization are zero,
so the rotation of the polarization towards the scattering vector, characteristic of a helical
modulation, is only observed through the depolarization of the scattered beam. The degree
of depolarization is a measure of the difference|C ′|2− |D′|2.

The depolarization measurements for the set ofh0` reflections were used in a least-
squares procedure to determine the ratioε = A/B and the angleψ which the vectorB
makes with thec-axis. The final fit gaveε = 0.999(6), ψ = −5.8(5)◦ indicating that the
envelope of the modulation is essentially circular with the normal to the plane in which the
spins rotate lying in thea–c plane at an angle of 18.1(6)◦ to a in β obtuse. This is nearly
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Figure 2. The schematic representation of the magnetic structure of the low-temperature
helimagnetic phase of Eu(As0.20P0.80)3. Only the europium atoms are shown.

parallel to the propagation vector which is also in thea–c plane and makes an angle of
9◦ with a in β acute. The values of the depolarization calculated for this model are given
table 1.

4. The helimagnetic structure

Zero-field neutron polarimetry for the Eu(As0.20P0.80)3 single crystal clearly demonstrates
that the low-temperature helimagnetic phase has a component of magnetic moment parallel
to the monoclinicb-axis. We have reanalysed the unpolarized neutron diffraction data of
reference [5] for Eu(As0.20P0.80)3, introducing constraints to force compatibility with the
conclusions drawn from the neutron polarimetry. The nuclear structure factors were used to
determine the scale factor. The refinement with 46 symmetry-independent nuclear reflections
gave an agreement factor ofR = 0.11. Using the scale factor determined by this refinement
and the 41 measured magnetic intensities, the low-temperature helimagnetic structure of
Eu(As0.20P0.80)3 was also refined. The quality of the fit as indicated by the agreement
factor R = 0.12 is comparable to that obtained for the nuclear structure. The magnetic
moment per Eu atom was found to be(7.4± 0.3)µB and the phase angleψ2−ψ1 was not
significantly different from zero, indicating parallel coupling of the Eu sublattices related
by the centre of symmetry at the origin. We conclude that the helimagnetic structure of
Eu(As0.20P0.80)3, stable at low temperatures, can be described by two sinusoidal components
of equal amplitude and frequency: one parallel to the monoclinicb-axis and a second, in
phase quadrature, lying in thea–c plane nearly perpendicular to the propagation vector.
Figure 2 shows a schematic representation of this structure.
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